Formation of a bis(histidyl) heme iron complex in manganese peroxidase at high pH and restoration of the native enzyme structure by calcium.

نویسندگان

  • H L Youngs
  • P Moënne-Loccoz
  • T M Loehr
  • M H Gold
چکیده

Manganese peroxidase (MnP) from Phanerochaete chrysosporium undergoes a pH-dependent conformational change evidenced by changes in the electronic absorption spectrum. This high- to low-spin alkaline transition occurs at approximately 2 pH units lower in an F190I mutant MnP when compared to the wild-type enzyme. Herein, we provide evidence that these spectral changes are attributable to the formation of a bis(histidyl) heme iron complex in both proteins at high pH. The resonance Raman (RR) spectra of both ferric proteins at high pH are similar, indicating similar heme environments in both proteins, and resemble that of ferric cytochrome b(558), a protein that contains a bis-His iron complex. Upon reduction with dithionite at high pH, the visible spectra of both the wild-type and F190I MnP exhibit absorption maxima at 429, 529, and 558 nm, resembling the absorption spectrum of ferrous cytochrome b(558). RR spectra of the reduced wild-type and F190I mutant proteins at high pH are also similar to the RR spectrum of ferrous cytochrome b(558), further suggesting that the alkaline low-spin species is a bis(histidyl) heme derivative. No shift in the low-frequency RR bands was observed in 75% (18)O-labeled water, indicating that the low-spin species is most likely not a hydroxo-heme derivative. Electronic and RR spectra also indicate that addition of Ca(2+) to either the ferric or ferrous enzymes at high pH completely restores the high-spin pentacoordinate species. Other divalent metals, such as Mn(2+), Mg(2+), Zn(2+), or Cd(2+), do not restore the enzyme under the conditions studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review on plant peroxidases

Plant peroxidase (EC: 1.11.1.7) a heme-containing protein which is widely used in plants, microorganisms and animals. This two - substrate enzyme, catalyze the hydrogen peroxide into water with   oxidation of many organic and inorganic substrates that all of them can be used to measure enzyme activity. Although it’s specific substrate is hydrogen peroxide. Calcium and at least four disulfide bo...

متن کامل

Biophysical and structural analysis of a novel heme B iron ligation in the flavocytochrome cellobiose dehydrogenase.

The fungal extracellular flavocytochrome cellobiose dehydrogenase (CDH) participates in lignocellulose degradation. The enzyme has a cytochrome domain connected to a flavin-binding domain by a peptide linker. The cytochrome domain contains a 6-coordinate low spin b-type heme with unusual iron ligands and coordination geometry. Wild type CDH is only the second example of a b-type heme with Met-H...

متن کامل

Structural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase

Horseradish peroxidase (HRP), has gained significant interests in biotechnology, especially in biosensor field and diagnostic test kits. Hence, its solvent-exposed lysine residues 174, 232, and 241 have been frequently modified with the aim of improving its stability and catalytic efficiency. In this computational study, we investigated the effects of Lys-to-Glu substitutions on HRP structure t...

متن کامل

Effect of arginine-48 replacement on the reaction between cytochrome c peroxidase and hydrogen peroxide.

The crystallographic structures of two cytochrome c peroxidase (CcP) mutants, CcP(R48L) and CcP(R48K), have been determined. In addition, the electronic absorption spectrum and the hydrogen peroxide reactivity of these two mutants have been determined between pH 4 and 8. Both the crystallographic structure and the electronic absorption spectrum of CcP(R48L) are consistent with exclusive pentaco...

متن کامل

The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution.

The crystal structure of manganese peroxidase (MnP) from the lignin-degrading basidiomycetous fungus Phanerochaete chrysosporium has been solved using molecular replacement techniques and refined to R = 0.20 at 2.0 A. The overall structure is similar to that of two other fungal peroxidases, lignin peroxidase from P. chrysosporium and Arthromyces ramosus peroxidase. Like the other fungal peroxid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 39 32  شماره 

صفحات  -

تاریخ انتشار 2000